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Abstract
We prove that the classical Fourier-transform operator F̂ intertwines two
q-difference equations for the continuous q-Hermite polynomials Hn(x|q)

of Rogers, which are associated with the two distinct sets of values for the
parameter q: 0 < q < 1 and 1 < q < ∞.

PACS numbers: 02.30.Nw, 02.30.Gp

1. Introduction

It is well known that an explicit realization of the Macfarlane–Biedenharn q-oscillator
[1, 2] can be formulated in terms of the continuous q-Hermite polynomials Hn(x|q) of Rogers
[3]. The continuous q-Hermite polynomials Hn(x|q) are also closely related to the oscillator
representations of the quantum algebra suq(1, 1) [4, 5].

This paper started from an attempt to make transparent an algebraic structure of
q-difference equations for the q-Hermite polynomials Hn(x|q), which originates such striking
harmony of these polynomials with the q-independent classical Fourier integral transform.
Having chosen the continuous q-Hermite polynomials Hn(x|q) as a beginning for our study,
we show in what follows that the Fourier transform intertwines two q-difference equations for
the Hn(x|q), which correspond to the distinct set of values for the parameter q : 0 < q < 1
and 1 < q < ∞.

Let us briefly recall some mathematical aspects of the classical Fourier integral transform.
The orthonormalized wavefunctions ψn(x) of the linear harmonic oscillator in non-relativistic
quantum mechanics,∫

R

ψm(x)ψn(x) dx = δmn, m, n = 0, 1, 2, . . . , (1.1)

are explicitly given as

ψn(x) := cnHn(ξ) exp(−ξ 2/2), 1/cn =
√√

π2nn!, (1.2)
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where Hn(ξ) are the classical Hermite polynomials and ξ := √
mω/h̄x is a dimensionless

coordinate (see, for example, [6]). In quantum mechanics they emerge as eigenfunctions of
the Hamiltonian Ĥ for the linear harmonic oscillator,

Ĥψn(x) ≡ h̄ω

2

(
ξ 2 − d2

dξ 2

)
ψn(x) = h̄ω (n + 1/2) ψn(x), (1.3)

which is a self-adjoint differential operator of the second order. The linear harmonic oscillator
wavefunctions ψn(x) (we recall that the functions Hn(y) e−y2/2 are usually referred to as
Hermite functions in the mathematical literature) represent an important explicit example
of an orthonormal and complete system in the Hilbert space L2(R, dx) of square-integrable
functions on the full real line x ∈ R. It is further well known that the wavefunctions of the
linear harmonic oscillator ψn(x) possess the simple transformation property with respect to
the classical Fourier transform: they are also eigenfunctions of the Fourier integral transform,
associated with the eigenvalues in, that is,

(Fψn)(x) ≡ 1√
2π

∫
R

eixyψn(y) dy = inψn(x). (1.4)

Evidently, if one considers some nontrivial one-parameter extension of the system of
functions ψn(x), then an extended system will not have the same properties as the initial one,
referred to above. For instance, it is natural that q-extensions of the Hermite polynomials
do not reveal the same transformation property as the wavefunctions ψn(x) do in (1.4). But
what is rather surprising that all known q-extensions of the Hermite polynomials Hn(x) exhibit
simple behavior with respect to the Fourier transform [7, 8].

A complementary motivation for studying this topic comes from the understanding that
the Fourier transform is in fact intimately connected with the finite (discrete) Fourier transform
[9, 10]. This circumstance enables one to establish that these q-extensions of the Hermite
polynomials Hn(x) enjoy simple transformation properties also with respect to the finite
Fourier transform (see [11] and references therein). In particular, it was shown in [12] that
one can construct a one-parameter family of q-extensions for eigenvectors of the finite Fourier
transform in terms of the continuous q-Hermite polynomials of Rogers. These q-extended
eigenvectors are of interest from the point of view of their applications in signal analysis
[13, 14] and as foundation for finite models in quantum mechanics [15, 16] and optics
[17, 18].

Our avowed interest in the continuous q-Hermite polynomials of Rogers is incited by the
fact that this family exhibits remarkable symmetry properties. Due to these properties they are
one of the main instruments for studying q-oscillators and their applications (see, for example,
[1, 2, 4]). In particular, it turns out that q-difference equations for this family are closely related
to Hamiltonians of the associated systems. The continuous q-Hermite polynomials are also
very useful as they provide an explicit simple realization of the oscillator representations of
the quantum algebra suq(1, 1), which are constructed in terms of the creation and annihilation
operators for the q-oscillator [4, 5].

The layout of the paper is as follows. Section 2 collects those known facts about the
continuous q-Hermite polynomials Hn(x|q), which are needed for deriving an operator form
of the Fourier integral transform for the q-Hermite polynomials in section 3 and an intertwining
relation between two q-difference equations for the Hn(x|q) in section 4. Section 5 closes the
paper with a few brief remarks, which outline some further research directions of interest.

Throughout this exposition we employ standard notations of the theory of special functions
(see, for example, [19] or [20]).
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2. The continuous q-Hermite polynomials

The continuous q-Hermite polynomials Hn(y|q) are those q-extensions of the Hermite
polynomials Hn(x), which are generated by the three-term recurrence relation

Hn+1(y|q) = 2yHn(y|q) − (1 − qn)Hn−1(y|q), 0 < q < 1, n = 0, 1, 2, . . . , (2.1)

with the initial condition H0(y|q) = 1. These polynomials were introduced in 1894 by Rogers
[3], although their orthogonality property on the finite interval y ∈ [−1, 1] was derived by
Allaway [21] only in 1980. The explicit form of Hn(y|q) is exhibited by their Fourier
expansion

Hn(y|q) =
n∑

k=0

[
n

k

]
q

ei(n−2k)θ , y = cos θ, (2.2)

where
[n
k

]
q

is the q-binomial coefficient.

It should be recalled that to consider the continuous q-Hermite polynomials Hn(y|q) for
the values of the parameter q in the interval [1,∞), it is customary to introduce the so-called
continuous q−1-Hermite polynomials hn(y|q) as [22]

hn(y|q) := i−nHn(iy|q−1). (2.3)

In view of the inversion formula[
n

k

]
q−1

= qk(k−n)

[
n

k

]
q

(2.4)

for the q-binomial coefficient, from (2.2) and (2.3) one deduces that

hn(sinh χ |q) =
n∑

k=0

(−1)kqk(k−n)

[
n

k

]
q

e(n−2k)χ . (2.5)

It is important to observe that in order to be able to formulate adequately transformation
properties of the q-Hermite and q−1-Hermite polynomials Hn(y|q) and hn(y|q) with respect
to the Fourier transforms one has to employ the following nonconventional parametrization
for their argument y:

y = cos θ = sin κx, θ = π

2
− κx, when 0 < q < 1;

y = sinh χ = sinh κx, χ = κx, when 1 < q < ∞.
(2.6)

In both cases above κ :=
√

ln q−1/2 or, equivalently, q := e−2κ2
. Thus, formulae (2.2) and

(2.5) are representable as expansions

Hn(sin κx|q) = in
n∑

k=0

(−1)k
[
n

k

]
q

ei(2k−n)κx, (2.7)

hn(sinh κx|q) =
n∑

k=0

(−1)k
[
n

k

]
q

qk(k−n) e(n−2k)κx, (2.8)

which are building blocks of the rest of this work. In particular, it should be noted that (2.7)
and (2.8) were key relations in establishing the Fourier integral transform [23]

1√
2π

∫
R

Hn(sin κy|q) eixy−y2/2dy = inqn2/4hn(sinh κx|q) e−x2/2, (2.9)
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which interrelates q-Hermite and q−1-Hermite polynomials. Finally, observe that it is not
hard to check, by using the recurrence relation (2.1) and definition (2.3), the validity of limit
relations

lim
q→1−

κnHn(sin κx|q) = lim
q→1−

κnhn(sinh κx|q) = Hn(x).

Therefore it is obvious that the Fourier integral transform (2.9) reduces to the classical result
(1.4) for the ordinary Hermite polynomials Hn(x) in the limit as q → 1.

3. Operator form of the Fourier transform

We begin this section with the remark that in foregoing formulae, related to the classical
Fourier transform, it proves more convenient to employ the self-adjoint number operator

N̂ := 1

2

(
ξ 2 − 1 − d2

dξ 2

)
, (3.1)

rather than the Hamiltonian Ĥ , defined by (1.3). These two quantum-mechanical operators,
N̂ and the Hamiltonian Ĥ , are interrelated in a simple way N̂ = 1

h̄ω
Ĥ − 1/2. From (1.3) and

(3.1) it is evident that

N̂ψn(x) = nψn(x). (3.2)

Besides, to simplify notations in what follows we will be employing x and y instead of
dimensionless variable ξ .

It is well known that integral Fourier transform in the Hilbert space L2(R, dx) of square-
integrable functions f (x), x ∈ R, can be represented in the operator form as

F̂ := exp
(π i

2
N̂

)
. (3.3)

Since the number operator N̂ is self-adjoint, from (3.3) it is clear that

F̂† ≡ F̂−1 = exp
(
−π i

2
N̂

)
(3.4)

and, consequently, F̂†F̂ = F̂F̂† = I , which means that F̂ is a unitary operator.
One readily verifies (by using definition (3.1) and formula (3.2)) that F̂ψn(x) = inψn(x),

that is, the eigenfunctions and eigenvalues of the unitary operator F̂ are the same as of the
integral Fourier transform (2.9). Observe also that by definition (3.3) the operators F̂ and N̂

commute, that is,

[F̂, N̂ ] ≡ F̂N̂ − N̂F̂ = 0. (3.5)

Thus, a compact form of (3.5),

F̂N̂F̂−1 = N̂, (3.6)

represents a standard algebraic way of expressing the fact that the number operator N̂ and the
Fourier-transform operator F̂ have a common set of the eigenfunctions ψn(x), n = 0, 1, 2, . . . .

Note also that substituting explicit form (3.1) of the number operator N̂ into (3.6) and canceling
common constant factors on both sides, one arrives at the relation

F̂
[
x2 + p̂2

x

]
F̂−1 = x2 + p̂2

x, p̂x := −i
d

dx
. (3.7)

At the same time, as we show below (see (3.10) for m = 2), it is straightforward to verify that

F̂x2F̂−1 = p̂2
x. (3.8)
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Consequently, (3.7) simply reduces to

F̂ p̂2
xF̂−1 = x2. (3.9)

Thus, the invariance of the number operator N̂ with respect to the similarity transformation
(3.6) is rooted in the fact that, first, the governing Hamiltonian Ĥ in (1.3) contains the
coordinate x and the momentum operator p̂x := −i d

dx
in a symmetric way and, second, the x2

and p̂2
x transform into each other under this similarity transformation by F̂ . As we shall see

in the next section, these two similarity transformations (3.8) and (3.9) of x2 and p̂2
x into each

other turn out to be key relations also in the case of the q-Hermite polynomials at hand.
Because of the importance of the integral Fourier transform (2.9) for the q-Hermite

polynomials, we derive in this section its operator form. We begin with the relation

F̂xm =
(

−i
d

dx

)m

F̂, (3.10)

where m is some positive integer. For m = 1 it is not hard to verify, by using the three-
term recurrence relation Hn+1(x) = 2xHn(x) − 2nHn−1(x) and the formula of differentiation
d

dx
Hn(x) = 2nHn−1(x) for the Hermite polynomials Hn(x), that

F̂xψn(x) =
(

−i
d

dx

)
F̂ψn(x) (3.11)

for the Hermite functions ψn(x) with arbitrary n = 0, 1, 2, . . . . The completeness of the
system of functions {ψn(x)}∞n=0 in the Hilbert space L2(R, dx) of square-integrable functions
(see pp.306–309 in [20] for a proof of this statement) permits one to extend relation (3.11) to an
arbitrary function f (x) ∈ L2(R, dx). Consequently, F̂x = (−i d

dx

)
F̂ (in quantum mechanics

this relation is equivalent to the statement that momentum px in the coordinate x-realization is
represented by the operator −i d

dx
) and iterating this formula m times in succession, one arrives

at (3.10).
Multiply now both sides of (3.10) by (ia)m/m!, a ∈ R, and sum them with respect to the

m from zero to infinity to obtain that

F̂ eiax = ea d
dx F̂, (3.12)

where exp
(
a d

dx

) ≡ T̂a is the unitary operator of the finite shift (displacement) over a distance
a, whose action on any function f (x) ∈ L2(R, dx) is given as T̂af (x) = f (x + a) (cf p.66
in [6]).

We are now in a position to derive an operator form of the Fourier integral transform (2.9).
Indeed, with the aid of the explicit representation for the continuous q-Hermite polynomials
(2.7), one can evaluate, by using at the last step (2.8), that

F̂
{
Hn(sin κx|q) e−x2/2

} = i−n

n∑
k=0

(−1)k
[
n

k

]
q

F̂
{
ei(n−2k)κx e−x2/2

}

= i−n

n∑
k=0

(−1)k
[
n

k

]
q

e(n−2k)κ d
dx F̂

{
e−x2/2

}

= i−n

n∑
k=0

(−1)k
[
n

k

]
q

e−[x+(n−2k)κ]2/2

= i−n

n∑
k=0

(−1)k
[
n

k

]
q

e(2k−n)κx−(n−2k)2κ2/2 e−x2/2

5
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= inqn2/4 e−x2/2
n∑

k=0

(−1)k
[
n

k

]
q

qk(k−n) e(n−2k)κx

= inqn2/4hn(sinh κx|q) e−x2/2. (3.13)

Thus the desired operator form of the integral Fourier transform (2.9) is

F̂
{
Hn(sin κx|q)e−x2/2

} = inqn2/4hn(sinh κx|q) e−x2/2. (3.14)

It should be emphasized that (3.14) is just another form of stating the key result (2.9) for the
case under investigation. But in the next section we show that it does enable one to employ
the operational calculus techniques in order to prove that the similarity transformation by F̂
intertwines two q-difference equations for the continuous q-Hermite polynomials of Rogers
(2.7) and (2.8).

4. Similarity transformation by F̂ converts q into q−1

The continuous q-Hermite polynomials Hn(sin κx|q) satisfy the q-difference equation

[eiκx e−iκ∂x + e−iκx eiκ∂x ]Hn(sin κx|q) = 2q−n/2 cos κxHn(sin κx|q), (4.1)

where ∂x ≡ d
dx

. We recall that this q-difference equation is a direct consequence of Roger’s
linear generating function

∞∑
n=0

tn

(q; q)n
Hn(sin κx|q) = eq(it e−iκx)eq(−it eiκx), |t | < 1, (4.2)

for the continuous q-Hermite polynomials Hn(sin κx|q) (see, for example, [19] or [20]). The
eq(z) in (4.2) denotes the q-exponential function, defined as

eq(z) :=
∞∑

n=0

zn

(q; q)n
= 1

(z; q)∞
. (4.3)

To see now how (4.1) emerges from (4.2), act on both sides of (4.2) by the difference operator
eiκxe−iκ∂x + e−iκxeiκ∂x . This yields

∞∑
n=0

tn

(q; q)n
[eiκx e−iκ∂x + e−iκx eiκ∂x ]Hn(sin κx|q)

= eiκxeq(it e−iκ(x−iκ))eq(−it eiκ(x−iκ))

+ e−iκxeq(it e−iκ(x+iκ))eq(−it eiκ(x+iκ)). (4.4)

Since q = e−2κ2
by definition, the right-hand side of (4.4) may be written as

eiκxeq(iq
1/2t e−iκx)eq(−iq−1/2t eiκx) + e−iκxeq(iq

−1/2t e−iκ(x+iκ))eq(−iq1/2t eiκ(x+iκ)). (4.5)

Apply then the functional equation eq(qz) = (1 − z)eq(z) for the q-exponential function (4.3)
to the first q-exponential factor in the first line of (4.5) and to the second q-exponential factor

6
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in the second line of (4.5) to obtain that

[eiκx(1 − iq−1/2t e−iκx) + e−iκx(1 + iq−1/2t eiκx)]eq(iq
−1/2t e−iκx)eq(−iq−1/2t eiκx)

= 2 cos κxeq(iq
−1/2t e−iκx)eq(−iq−1/2t eiκx)

= 2 cos κx

∞∑
n=0

(q−1/2t)n

(q; q)n
Hn(sin κx|q).

One thus arrives at the identity
∞∑

n=0

tn

(q; q)n
[eiκx e−iκ∂x + e−iκx eiκ∂x ]Hn(sin κx|q) = 2 cos κx

∞∑
n=0

(q−1/2t)n

(q; q)n
Hn(sin κx|q).

(4.6)

It remains only to equate coefficients of the equal powers of the parameter t on both sides of
(4.6) to obtain difference equation (4.1).

In the case when the parameter q lies in the interval [1,∞), the q-difference
equation (4.1) takes the form (valuable background material about these two equations (4.1)
and (4.7) for the continuous q-Hermite and q−1-Hermite polynomials, respectively, can be
found in [24, 25])

[eκx e−κ∂x + e−κx eκ∂x ]hn(sinh κx|q) = 2qn/2 cosh κxhn(sinh κx|q). (4.7)

A glance at the Fourier transforms (2.9) and (3.14) reveals that we actually need
q-difference equations for the functions Hn(sin κx|q) e−x2/2 and hn(sinh κx|q) e−x2/2. So,
one readily deduces from (4.1) and (4.7) that the desired equations can be written as (recall
that p̂x = −i d

dx
as before)

cosh κp̂x

[
Hn(sin κx|q) e−x2/2

] = q−(2n+1)/4 cos κxHn(sin κx|q) e−x2/2, (4.8)

cos κp̂x

[
hn(sinh κx|q) e−x2/2] = q(2n+1)/4 cosh κxhn(sinh κx|q) e−x2/2, (4.9)

respectively. These two q-difference equations are in fact interrelated by the similarity
transformation by the unitary Fourier-transform operator F̂ , defined in (3.3). Indeed, to
prove this assertion act on both sides of equation (4.8) by the operator F̂ to obtain

F̂ cosh κp̂x

[
Hn(sin κx|q) e−x2/2

] = q−(2n+1)/4F̂ cos κxHn(sin κx|q) e−x2/2. (4.10)

Substitute now the relation

Hn(sin κx|q) e−x2/2 = inqn2/4F̂−1
[
hn(sinh κx|q) e−x2/2

]
,

which follows from (3.14), into both sides of (4.10) and employ on the right side of it the
identity

F̂ cos κxF̂−1 = cos κp̂x,

which is an easy consequence of (3.12). This yields

F̂ cosh κp̂xF̂−1
[
hn(sinh κx|q) e−x2/2

] = q−(2n+1)/4 cos κp̂x

[
hn(sinh κx|q) e−x2/2

]
. (4.11)

Comparison of (4.11) and (4.9) shows that these two q-difference equations coincide provided
that the identity

F̂ cosh κp̂xF̂−1 = cosh κx (4.12)

7
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holds. But this is not hard to prove, bearing in mind the well-known series expansion

cosh z =
∞∑

k=0

z2k

(2k)!
.

The point is that the identity (3.9) from the previous section readily gets generalized (recall
that F̂ is a unitary operator) to

F̂ p̂2m
x F̂−1 = x2m, (4.13)

where m is an arbitrary integer number. So, after multiplying both sides of (4.13) by the factor
κ2m/(2m)! and summing them with respect to m from zero to infinity, one arrives at the desired
identity (4.12).

Similarly, one may start with the q-difference equation (4.9) and show that it is reducible
to the q-difference equation (4.8), provided that

F̂−1 cosh κxF̂ = cosh κp̂x. (4.14)

This identity follows at once from (4.12) (or can be deduced directly from (3.8) by a derivation
similar to that of (4.12)), already proved above.

Thus, we have demonstrated that q-difference equations (4.8) and (4.9) are interrelated
by the similarity transformation by the operator F̂ . This algebraic property of (4.8) and
(4.9) explains the simple behavior of the q-Hermite polynomials (with 0 < q < 1 and
1 < q < ∞) with respect to the integral Fourier transform in (2.9). Obviously, it is more
complicated than the mere commutativity of the operators N̂ and F̂ in the case of the Hermite
polynomials Hn(x). But the curious fact is that although q-difference equations (4.8) and
(4.9) are no longer invariant with respect to the interchange of the coordinate x and momentum
operator p̂x := −i d

dx
, those equations do exhibit simple behavior under this interchange

x ↔ p̂x . Indeed, since the interchange x ↔ p̂x entails the changes cos κx ↔ cos κp̂x and
cosh κx ↔ cosh κp̂x in (4.8) and (4.9), this means that these equations convert into each other
under the interchange x ↔ p̂x . In other words, exactly as in the case of the ordinary Hermite
polynomials Hn(x), the similarity transformation of q-difference equations (4.8) and (4.9) by
the operator F̂ turns out to be equivalent to the interchange x ↔ p̂x in (4.8) and (4.9).

5. Concluding remarks

We have restricted our attention in the present work to only one q-extension of the classical
Hermite polynomials Hn(x), the continuous q-Hermite polynomials Hn(x|q) with 0 < q < 1
and 1 < q < ∞. As mentioned in introduction, there are other similar pairs of q-analogs
of Hn(x), such as Rogers–Szegö and Stieltjes–Wigert families of q-polynomials [7], as well
as the discrete q-Hermite polynomials of type I and type II [8]. Besides, it is known [7]
that q-Laguerre polynomials and various q-exponential and q-Bessel functions also exhibit
simple transformation properties with respect to the integral Fourier transform, similar to
(2.9). Therefore it will be of interest to examine the possibility of implementing the same
technique to the study of algebraic properties of those q-difference equations, which govern
the above-mentioned instances of other q-extensions of classical special functions.
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‘Óptica Matemática’.
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